
Version: 0.3 Dated: 2024-10-21 Authored by: CM

Control Flow for Agents - Burr + Hamilton combo
Tooling dedicated to capturing interactions with LLMs as state machines.

colum.mccoole@analect.com
colum-mccoole-746b946a

analect/technical-docs-hierarchy

36

Docs: Level 2 AI/ML Value-chain

Topic Navigation

├── Self-hosted OSS Models on AWS with Spot GPU pg. 34.
├── Large Language Model - LLM Agent Frameworks pg. 35.
├── Control Flow for Agents - Burr + Hamilton combo pg. 36.
├── Building an AWS Solution Architect Agent pg. 37.
└── Fin. Analyst insights Multi-modal Platform on AWS pg. 38.

Better Flow Controls When Developing LLM Apps
Those with greatest experience in developing LLMs articulate that com-
mon friction points with GenAI applications can include logically modeling
application flow, debugging and recreating error cases, and curating data
for testing/evaluation. The developers of Burr say these problems all got
easier to think about when they modeled applications as state machines
composed of actions designed for introspection. An application will hold
state and make decisions off of that state. You can therefore capture your
application as a state-machine, modifying the state as you go. If you do
that explicitly, you get all sorts of benefits, per 1 - 5 on the right.

Many other solutions out there, including LangGraph, use graphs to model
an application, since they can be easily reasoned about as connected
nodes <some-input>--> <data-transform> --> <some-output>. Per Fig 1, Burr
is a light-weight framework that wraps around python functions, making
a helpful distinction around Layer 1 actions (nodes) that are composable
into Layer 2 applications, allowing for extending or refactoring over time.

Figure 1. 2-layer approach to build a maintainable system - The
graduation problem: avoid frameworks getting in the way, Nov. 2024

Developer Concerns when Evolving LLM Applications
Burr is meant to start off as an extremely lightweight tool to make building
LLM applications easier. You’ll find a useful 90-second intro here and an
informative thread on Hacker News at HN: Burr — A Framework for building
and debugging GenAI apps faster, Apr. 2024. Below are some of the out-
of-the-box features. Particularly useful are its ability to capture telemetry
and other meta-data pertaining to app interactions either directly with LLM
end-points or LLM-enabled agentic tools.

1 Tracing/telemetry – LLMs can be chaotic, and you need visibility into
what decisions it made and how long it took to make them.

2 State persistence – thinking about how to save/load your applica-
tion is a whole other level of infrastructure you need to worry about.

3 Visualization/debugging – when developing you’ll want to be able to
view what it is doing/did + load up the data at any point

4 Manage interaction between users/LLM – pause for input in certain
conditions

5 Data gathering for evaluation + test generation – storing data run in
production to use for later analysis/fine-tuning

Burr / Hamilton Pairing for Improved Granularity of Flow
Burr facilitates implementing the flow chart mental model for agents. Writ-
ing an application with Burr is a matter of defining action and state. It
makes developing reliable RAG and LLM agents with predictable and de-
buggable behaviors much simpler.

A sister project from DAGWorks called Hamilton brings modularity and
structure to any Python application moving data: ETL pipelines, ML work-
flows, LLM applications, RAG systems, BI dashboards, and the Hamilton UI
allows you to automatically visualize, catalog, and monitor execution.

Figure 3: Structure Data Transformations as DAGs, using Hamilton

Figure 2. **Burr UI* - Introspect Application Logic and LLM Interface
while Capturing Telemetry for Evaluation

Decorating Existing Code for Free Visualistion / Telemetry
From Fig 1, an app to ingest content from a URL and enable a user to ask
questions of it, starts with two ‘actions’, ingest_blog and ask_question. This
works, but an app creator may seek greater granularity and so Fig 3 shows
a refactor of actions using Hamilton to structure data transformations as
directed acyclic graphs (DAGs). Hamilton uses the function and parame-
ter names to infer the dependencies between functions and the graph
structure. See V3: Keeping your code modular. Burr was originally built as
a harness to handle state between executions of Hamilton DAGs and so
integration between the two libraries is tight.

Per Fig 2, being able to introspect the flows between the app’s node archi-
tecture is a powerful feature. These interactions gets persisted on disk, al-
lowing for better LLM app evaluation, thereby improving the development
iterative process.

• Burr Introduction
• Burr – Develop Stateful AI Applications, Mar. 2024
• The graduation problem: avoid frameworks getting in the way, Nov. 2024
• Ep. #19, Auditability Matters with Stefan Krawczyk of DAGWorks

https:\/\/analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https://hamel.dev/blog/posts/evals/
https://burr.dagworks.io/
https://www.langchain.com/langgraph
https://github.com/dagworks-inc/burr
https://blog.dagworks.io/p/the-graduation-problem-avoid-frameworks
https://blog.dagworks.io/p/the-graduation-problem-avoid-frameworks
https://www.youtube.com/watch?v=r7_hKcdtpE0
https://news.ycombinator.com/item?id=39917364
https://news.ycombinator.com/item?id=39917364
https://github.com/dagworks-inc/hamilton
https://hamilton.dagworks.io/en/latest/concepts/ui
https://github.com/DAGWorks-Inc/burr/blob/main/examples/hamilton-integration/notebook.ipynb
https://www.youtube.com/watch?v=rEZ4oDN0GdU
https://blog.dagworks.io/p/burr-develop-stateful-ai-applications
https://blog.dagworks.io/p/the-graduation-problem-avoid-frameworks
https://www.heavybit.com/library/podcasts/generationship/ep-19-auditability-matters-with-stefan-krawczyk-of-dagworks

