* ANALECT 34

Version: 0.3 Dated: 2024-10-18 Authored by: CM

[Docs: >> Level 2 >> Al/ML Value—chain]

Data System Layers

In the ‘Modular Data Tooling’ section of this document pack, The
Composable Codex envisaged three layers of a data-system - data, execu-
tion and Ul (expression). The DAGWork's variant is presented below, where
they include an asset layer that is responsible for structuring code into
assets that are meaningful to the business and producing them and the
orchestration layer that triggers their computation.

» Data: the physical representation of data, both inputs and outputs

« Execution: perform data transformations

« Expression: the language to write data transformations

» Asset: an object in persistent storage that captures some understanding
of the world (e.g., a dataset, a database table, an ML model, dashboards)

- Orchestration: operational system for the creation of assets

Layer Example tools

Orchestration Airflow, Metaflow, Dagster, Prefect, Temporal

Asset Hamilton, Kedro, dbt, dit, SQLMesh, LangChain
Expression pandas, SQL, polars, R, Ibis,

Execution Spark, Snowflake, DuckDB, RAPIDS

Data S8, Postgres, Snowflake, local files

Figure 1. DAGWork’s 5-layer modular data-stack

Pipeline Orchestration using DAGs

Pipeline solutions like Airflow, Dagster, Hamilton and Kedro, all use a di-
rected-acyclic-graph (DAG) to represent a pipeline, specifying how ‘asset-
s’ (a node within the DAG) relate and depend upon eachother. Imperative
systems require developers to expressly tell the orchestrator ‘what to do’.
Declarative ones, declare what can be computed and each function infers
its dependencies.

Imperative orchestrators (Airflow) are efficient when there are only a few
tasks and the recipe is linear. When the number of tasks grows, it becomes
difficult to manually specify dependencies and maintain code.

Declarative orchestrators (Hamilton, Dagster) better manage a large num-
ber of tasks and complex dependencies by automating the DAG assembly.
Consequently, it favors writing smaller functions resulting in code that's
easier to read, test, debug, and maintain.

Common to all tools we profile here is the ability to run and test locally,
but then the possibility of running them in production in the cloud, usually
without any need to adjust the code much, if at all, making the efficient to
work with.

A New Generation of Pipeline and Orchestration Tools

Tooling like dlt, metaflow, hamilton and kedro require that we don’t reinvent the wheel.€) analect/technical-docs-hierarchy

dlt (data-load-tool) - github.com/dlt-hub/dlt
dlt contains all data-engineering best practices and handles:

« schema evolution - dlt automatically infers the initial schema for your
first pipeline run. As the structure of data changes, such as the addi-
tion of new columns or changing data types, dlt handles these schema
changes

data contracts - can be used to raise an exception if data is not what
you expected, allowing for discards at the row and value-level.
incremental loading - is a crucial concept in data pipelines that involves
loading only new or changed data instead of reloading the entire dataset.
performance management - dlt provides several mechanisms and con-
figuration options to manage performance and scale-up pipelines, in-
cluding parallel execution, thread pools and async exection, memory
buffers, iterators and chunking.

pre-built pipeline templates - d1t comes with many verfied sources and
destinations, so you use a command like dlt init github postgres to get
the skeleton of a working pipeline pulling data from github and pushing
it to postgres.

rest_api source toolkit - a declarative and customisable REST interface
that uses Python dictionaries instead of YAML or JSoN. This choice allows
more advanced developers to inject custom functionality, such as writing
their own authorization methods for an API.

Metaflow - github.com/netflix/metaflow

Metaflow is a framework for defining data science and data engineering
workflows with the the ability to define local experiments and scale those
experiments to production jobs from a single API. Metaflow follows the
dataflow paradigm which models a program as a directed graph of oper-
ations.

In particular, Metaflow is designed to be a cloud-native framework, relying
on basic compute and storage abstractions provided by all major cloud
providers.

When you run a flow without special decorators, the flow runs locally on
your computer like any Python script or a notebook. If your job requires
more resources than what is available on your workstation, simply anno-
tate the step with a @resources decorator. The most advanced pattern
of compute that Metaflow supports is distributed computing using the
@parallel decorator.

Metaflow allows you to specify software dependencies as a part of the flow.
You can either use a Docker image with necessary dependenices included,
or layer them on top of a generic image on the fly using @conda or @pypi
decorators. You can use the image argument in @batch and @kubernetes
decorators to choose a suitable image on the fly, like an official pytorch
image.

® colum.mccoole@analect.com
N colum-mccoole-746b946a

Kedro - github.com/kedro-org/kedro

Kedro is an open-source Python framework to create reproducible, main-
tainable, and modular data science code. It uses software engineering best
practices to help you build production-ready data science pipelines. Kedro
borrow heavily from the Cookiecutter Data Science approach by seeding
new projects with pre-configured boilerplate code. Kedro is orchestrator-
agnostic.

project-dir
f— conf
| }— base

| | | catalog.yml # config ref load/store assets
| | L— parameters.yml # params to pass to pipeline at exec.
| L— 1logging.yaml
[— data # Local project data (not committed to vc)
— docs # Project documentation
— notebooks # Project-related Jupyter notebooks
}— README . md # Project README
F— src # Project source code

L— project name
— pipelines
| — pipeline name

f— nodes.py # python func to transform assets

| L— pipeline.py # form pipeline from kedro nodes
|— pipeline registry.py # pipeline discovery from CLI
L— settings.py # default config for hooks and pipeline

Parent directory of the template
Project configuration files

exec.
L— pyproject.toml # Identifies the project root; has config info

Hamilton - github.com/dagworks-Inc/hamilton

For comparison sake, the Kedro project above would look like this in
Hamilton. It is much more light-weight. Hamilton allows you to write func-
tions that are “pure” and then compose them together into a dataflow.
Hamilton separates transformation logic from execution, allowing you to
seamlessly scale via remote execution (AWS, Modal, etc.) and specialized
computation engines (Spark, Ray, duckdb etc.).

project-name/

F— src/

| L— project name/

\ F— _init_ .py

| |— dataflow.py # define data transforms in pipeline

| L— run.py # execute the pipeline (includes param, data-
catalog)

L— requirements.txt

The new Hamilton Kedro plugin allows you to connect your Kedro Pipeline
to the Hamilton Ul for rich observability and introspection features as well
as metadata capture.

https:\/\/analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierarchy/
https://voltrondata.com/codex/open-standards#the-data-systems-hierarchy-of-needs
https://voltrondata.com/codex/open-standards#the-data-systems-hierarchy-of-needs
https://blog.dagworks.io/p/hamilton-and-kedro-for-modular-data
https://dlthub.com/docs/general-usage/schema-evolution
https://dlthub.com/docs/general-usage/schema-contracts#schema-and-data-contracts
https://dlthub.com/docs/general-usage/incremental-loading
https://dlthub.com/docs/reference/performance
https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api
https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api
https://metaflow.org/
https://docs.metaflow.org/scaling/dependencies
https://hub.docker.com/r/pytorch/pytorch
https://hub.docker.com/r/pytorch/pytorch
https://github.com/drivendataorg/cookiecutter-data-science
https://hamilton.dagworks.io/en/latest/
https://github.com/DAGWorks-Inc/hamilton/blob/main/examples/kedro/kedro-plugin/kedro_to_hamilton.ipynb

