
Version: 0.1 Dated: 2024-10-15 Authored by: CM

Shift Towards Embedded Databases for Serverless
DuckDB, LanceDB and KuzuDB are usurping the need to host 24/7 database-engines.

colum.mccoole@analect.com
colum-mccoole-746b946a

analect/technical-docs-hierarchy

22

Docs: Level 2 AI/ML Value-chain

Topic Navigation
How does this topic relate to other relevant content in this space.

└── DataOps Strategy - Embedding Data Everywhere pg. 20.
├── Adoption of Modular Data Tooling Brings Flexibility pg. 21.
├── Shift Towards Embedded Databases for Serverless pg. 22.
├── New generation of data-tooling for model fine-tuning pg. 23.
└── DataOps - Data Lakehouse Dremio pg. 24.

What Problem are We Solving For?
The client/server architecture for databases has been around for a very
long time, and has been proven to be a successful commercial model,
which is why they are the norm in large-scale production use cases. How-
ever, they aren’t well adapted to serverless use-cases, since they require to
be on all the time, incurring server costs, even if they aren’t being actively
used. It turns out that new embedded database

What are Embedded Databases?
There are a number of very informative blog-posts from The Data Quarry
on embedded-databases that are recommended reading.

An embedded database is an in-process database management system
that’s tightly integrated with the application layer. The term “in-process” is
important because the database compute runs within the same underlying
process as the application. A key characteristic of embedded databases is
how close the storage layer is to the application layer. Additionally, data
that’s larger than memory can be stored and queried on-disk, allowing
them to scale to pretty huge amounts of data (TB) with relatively low query
latencies and response times.

The evolution of modular data-tooling has been an important driver of
the new database models, with Arrow as a de-facto standard for efficiency
gains with in-memory and on-disk capabilities that are core features of
this new class of embedded database. The embedded architecture is still
relatively new, at least for OLAP databases, nevertheless vendors are de-
livering rich feature-sets as open-source solutions, even as they figure out
their monetization strategies.

Viability as a Serverless Solution
Being able to dispense with traditional databases in favour of cheaper ob-
ject-stores, such as S3 is a game-changer. It means you can work with ever-
scaling amounts of data, that working with AI-based solutions requires,
benefit from the low-cost object-store model and get to keep the query-
processing power that embedded-databases bring. You also don’t have to
compromise on query latency, with the advent of more performant vari-
ants such as S3 Express.

We illustrate the usage of LanceDB as part of a Serverless RAG implemen-
tation on page 27. Unlike most other RAG-based solutions, requiring you to
store raw data in one place and embeddings elsewhere, both get housed
in the same place with LanceDB, reducing considerably the overhead of
working with these technologies.

Greater Alignment to ML / AI Workloads
Per this Data Council talk, Chang She, CEO of LanceDB, contends that the
current need to duplicate data depending on the end use-case, in the con-
text of experimentation with AI, is inconvenient and expensive. You have
a requirement to hold raw data, vector data, often tensor-based data in a
different form again, with each potentially duplicated further with experi-
mentation around adjusting a relevant feature-set.

LanceDB is able to have a single data-store and therefore a single source
of truth that is able to hold multi-modal raw data and the calculated vec-
tors from that data as well as various forms of indexing that sits above that
data, making it potentially seamlessly available to different end use-cases
in the requisite formats. This makes it much more amenable to being a
composable solution for data in an AI training and exploration context.

DuckDB
Among it’s many technical features, perhaps most importantly, DuckDB has
fast become a universal data connector, due to the sheer number of data
formats it’s able to natively read data from: - A lot of ETL processes involve
expensive transformations that reshape data from one form to another
- DuckDB natively reads from formats like CSV, JSON (including nested
JSON), Parquet, and has scanners to directly read from Postgres and SQLite
databases - Thanks to the Arrow format, data can very easily move from
a DuckDB table to a Pandas or Polars DataFrame, and vice-versa - It also
offers connectors that allow users to directly read Parquet data from S3,
GCS and Azure storage - Because DuckDB natively supports a lot of these
formats, it’s able to perform efficient scans on-disk, without having to ma-
terialize them in-memory all the time (unlike Pandas).

Figure 1. Embedded databases organized by data model paradigm. source

KuzuDB
KùzuDB is an open-source graph database management system (GDBMS)
that also happens to be embedded. It has:

• first-class support for the labelled property graph (LPG) model
• use openCypher as its query language
• built for vectorized execution of OLAP-type queries
• designed to be the storage layer of choice for graph machine learning

applications

LanceDB
LanceDB is an open-source embedded database for vector search built
with persistent storage, which greatly simplifies retrieval, filtering and
management of embeddings. On the surface, it is a vector database written
in Rust, but underneath, it’s a collection of specialized modular compo-
nents which are themselves independent components of the Rust tooling
ecosystem.

Key features include:

• Incredibly lightweight (no DB servers to manage), because it is entirely
in-process

• Extremely scalable from development to production
• Ability to perform full-text search (FTS), SQL search and vector search
• Multi-modal data support (images, text, video, audio, point-clouds, etc.)
• Zero-copy (via Arrow) with automatic versioning of data

LanceDB implements its own vector index on top of the underlying Lance
data format, which is an IVF-PQ disk-based index. Tantivy is an open source
full-text search engine incorporated to allow keyword-based search via
BM25. DataFusion, an embeddable SQL query engine, is used to power the
full-text/vector search queries via a SQL interface. The Apache arrow for-
mat is used to allow a smooth transition between in-memory and on-disk
data storage, and also for seamless interoperability with other data for-
mats from systems like DuckDB, Pandas or Polars.

https:\/\/analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
mailto:colum.mccoole@analect.com
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/www.linkedin.com/in/colum-mccoole-746b946a/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierachy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierachy/
https:\/\/gitlab.analect.com/clients/analect/technical-docs-hierachy/
https://thedataquarry.com/tags/embedded-db/
https://www.datacouncil.ai/talks24/foundations-for-a-multi-modal-lakehouse-for-ai
https://thedataquarry.com/posts/embedded-db-1/
https://opencypher.org/

